简介:考虑ATM交易过程当中产生的一系列参数,如交易量、交易成功率和响应时间等,对交易状态特征进行分析并建立了异常检测模型。针对成功率与响应时间2个参数,利用聚类算法将数据点划分为正常点、疑似异常点、异常点3大类。对于疑似的异常点,再根据其时间序列周围点的分布情况确定是否确实为异常点;对于交易量参数,首先通过LOF局部离群因子对离群点进行识别,再结合交易量随时间的移动均线及标准差加以辅助筛选,得到初步的疑似异常点,进一步通过与不同天同一时刻数据进行比较,最终确定是否为异常点。根据上述模型,本文将异常情况划分为3个预警等级,并对重大故障情况进行预测。