简介:本文给出一个推广的含Cauchy核奇异积分的内插值求积公式,并讨论所得求积公式的误差估计和收敛性.
简介:第一类弱奇异核Fredholm积分方程由于奇异及本质的不适定性,给求解带来很大难度.本文首先利用克雷斯变换将方程转化,并对转化后的方程进行高斯一勒让德离散,得到一离散不适定的线性方程组,结合正则化方法对该类问题进行数值求解.最后给出了数值模拟,验证了本文方法的可行性及有效性.
简介:定义在C^n中具有逐块光滑边界的有界域上光滑函数的一种积分表示,这种积分表示的特点是积分式中含有局部的全纯核,且含有可供任意选择的实参数p,2≤p<+∝,利用这个公式,我们可获得有界域上-↑a-方程的局部解和证明在含参数局部意义下存在一致估计。
简介:为学习微积分的读者介绍如何将基本流体力学应用于对发展中国家非常重要的简单重力输水系统的建模。首先推导出Bernoulli方程,从而了解作为沿流线运动的流体质点压力、速度和高度之间的关系。其次,应用Bernoulli方程分析一个简单的输水系统的合力和流速。然后,对层流和湍流分别考虑分压水箱、不同直径的管道及摩擦的影响。最后,讨论在密克罗尼西亚和洪都拉斯重力输水系统的设计和安装。