学科分类
/ 1
5 个结果
  • 简介:摘要 : 农业模型、农业人工智能及数据分析等技术贯穿于智慧农业的信息感知、信息传输、信息处理与控制全过程,是智慧农业的核心技术。为进一步明晰农业模型的内涵和作用,促进农业模型进一步研究及应用,推动智慧农业健康、稳定和可持续发展,本研究采用系统分析、比较及关系框图等方法,分析了农业模型的内涵,阐述了农业模型和智慧农业要素与过程的关系,明确了农业模型的作用并附以应用案例,比较了农业模型的国内外重要发展动态与趋势。国内外农业模型研究与应用重要进展比较表明,农业模型研究应用需要考虑农业生物要素的 4个水平、农业环境要素的 6个尺度、农业技术与农业经济要素的 6个层次并采用相应方法进行,农业模型环境要素空间多尺度研究应用有较大发展潜力;农业模型与分子遗传学、感知技术及人工智能技术结合,农业模型研究应用的公私有组织协作,粮食安全挑战将成为农业模型进一步发展的重要推动力,且需更注重将各种农业系统模拟、数据库、和谐性与开放数据及决策支持系统相连接。中国农业模型研究与应用已形成具有中国特色的作物模型系列,也融入农业模型的互比较与改进、智慧农业等世界潮流,需要抢抓机遇,加快发展。农业模型是农业系统要素内及要素间关系的定量化表达,是农业科学定量与综合的重要方法,具有认识论价值,它与感知技术的结合可以在智慧农业数据获取与处理中发挥不可或缺的作用,成为信息农业技术落地应用的重要桥梁和纽带。

  • 标签: 农业模型 模型分类 生物模型 环境模型 技术模型 经济模型 应用案例 智慧农业
  • 简介:摘要 : 水稻叶片叶绿素含量遥感诊断是实现水稻精准施肥的核心要素。本研究通过分析寒地水稻关键生育期叶片高光谱反射率信息,同时结合 PROSPECT模型叶绿素含量吸收系数,参考借鉴现有高光谱植被指数的构造方法和形式,利用相关性分析、连续投影法、遗传算法优化的粗糙集属性简约法进行高光谱特征选择,提出了仅含有 695、 507和 465nm 3个高光谱特征波段的红边优化指数( ORVI)。与 Index Data Base数据库中其他用于叶绿素含量反演植被指数,包括 ND528,587、 SR440,690、 CARI、 MCARI的反演结果进行了对比分析,结果表明: IDB数据库中的已有 4种植被指数叶绿素含量反演模型的决定系数 R2分别为 0.672、 0.630、 0.595和 0.574; ORVI植被所建立的叶绿素含量反演模型的决定系数 R2为 0.726,均方根误差 RMSE为 2.68,精度高于其他植被指数,说明了 ORVI在实际的应用中,能够作为快速反演水稻叶绿素含量的高光谱植被指数。本研究能够为寒地水稻叶绿素含量高光谱遥感诊断及管理决策提供一定的客观数据支撑和模型参考。

  • 标签: 植被指数 叶绿素反演 水稻叶片 高光谱遥感 红边优化指数 ORVI
  • 简介:摘要 : 含水量是表征水稻生理和健康状况的关键参数,精确预测水稻含水量对于水稻育种和大田精准管理具有重要意义。目前,利用无人机搭载光谱图像传感器监测作物生长的研究主要集中在利用植被指数评估作物在单一或者几个生育期的生长参数,针对作物含水量监测的研究非常有限。本研究主要利用多旋翼无人机低空遥感平台获取不同生育期水稻冠层的 RGB图像和多光谱图像,通过提取植被指数和纹理特征,分析水稻的动态生长变化,并构建了基于随机森林回归方法的含水量预测模型。试验结果表明:( 1)从无人机图像提取的植被指数、纹理特征以及地面测量的含水量都能用于监测水稻生长,并且这些参数随水稻生长呈现出了相似的动态变化趋势;( 2)与 RGB图像相比,多光谱图像评估水稻含水量具有更高的潜力,其中归一化光谱指数 NDSI771,611实现了更好的预测精度( R2=0.68, RMSEP=0.039, rRMSE =5.24%);( 3)融合植被指数和纹理特征能够进一步改善含水量的预测结果( R2=0.86, RMSEP=0.026, rRMSE=3.51%),预测误差 RMSEP分别减小了 16.13%和 18.75%。上述结果表明,基于无人机遥感技术监测水稻含水量是可行的,可为农田精准灌溉和田间管理决策提供新思路。

  • 标签: 无人机低空遥感 水稻含水量 RGB图像 多光谱图像 植被指数 纹理特征 特征融合
  • 简介:摘要 : 为提高现有苹果目标检测模型在硬件资源受限制条件下的性能和适应性,实现在保持较高检测精度的同时,减轻模型计算量,降低检测耗时,减少模型计算和存储资源占用的目的,本研究通过改进轻量级的 MobileNetV3网络,结合关键点预测的目标检测网络( CenterNet),构建了用于苹果检测的轻量级无锚点深度学习网络模型( M-CenterNet),并通过与 CenterNet和单次多重检测器( Single Shot Multibox Detector, SSD)网络比较了模型的检测精度、模型容量和运行速度等方面的综合性能。对模型的测试结果表明,本研究模型的平均精度、误检率和漏检率分别为 88.9%、 10.9%和 5.8%;模型体积和帧率分别为 14.2MB和 8.1fps;在不同光照方向、不同远近距离、不同受遮挡程度和不同果实数量等条件下有较好的果实检测效果和适应能力。在检测精度相当的情况下,所提网络模型体积仅为 CenterNet网络的 1/4;相比于 SSD网络,所提网络模型的 AP提升了 3.9%,模型体积降低了 84.3%;本网络模型在 CPU环境中的运行速度比 CenterNet和 SSD网络提高了近 1倍。研究结果可为非结构环境下果园作业平台的轻量化果实目标检测模型研究提供新的思路。

  • 标签: 机器视觉 深度学习 轻量级网络 无锚点 苹果检测
  • 简介:摘要 : 叶片湿润时间( LWD)是植物病害模型的重要输入变量之一,它与许多叶部病原菌的侵染有关,影响病原侵染和发育速率。为了准确地预测日光温室黄瓜病害的发生时间和方位,本研究于 2019年 3月和 9月在北京两个不同类型日光温室内按照棋盘格法设置了 9个采样点部署温湿光传感器和目测叶片湿润时间,每隔 1 h采集一次温度、湿度、辐射和叶片湿润数据进行定量估算分析。分析结果表明: BP神经网络模型在两个温室的试验条件下获得了相似的准确度( ACC为 0.90和 0.92),比相对湿度经验模型估算叶片湿润时间的准确度( ACC为 0.82和 0.84)更高,平均绝对误差 MAE分别为 1.81和 1.61 h,均方根误差 RSME分别为 2.10和 1.87,决定系数 R2分别为 0.87和 0.85;在晴天和多云天气条件下,叶片湿润时间的空间分布总体规律是南部>中部>北部,南面是叶片湿润平均时间( 12.17 h/d)最长的区域;由东向西方向上,叶片湿润时间的空间分布总体规律是东部>西部>中部,中部是叶片湿润平均时间( 4.83 h/d)最短的区域;雨天的叶片湿润平均时间比晴天和多云长,春季和秋季分别为 17.15和 17.41 h/d。这些变化和差异对温室黄瓜种群水平方向的叶片湿润时间分布具有重要影响,与大多数高湿性黄瓜病害的发生规律密切相关。本研究为预测温室黄瓜病害分布提供了有价值的参考,对控制病害流行和减少农药使用具有重要意义,提出的区域化分析温室内叶片湿润时间的方法,可以为模拟日光温室叶片湿润时间的空间分布提供参考。

  • 标签: 日光温室 估算模型 区域化 叶片湿润时间 BP神经网络 传感器