学科分类
/ 19
365 个结果
  • 简介:采用复合包渗法在C103铌合金基体上制备硅化物涂层,利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和能谱分析(EDS)等检测手段对涂层组织结构进行观察和分析,重点采用TEM分析涂层与基体界面区微观结构。结果表明:涂层是以MoSi2为主体层多相复合结构;涂层与基体界面处存在NbSi2过渡层;由外向内,过渡层形貌发生明显改变,逐渐由细小等轴晶组织过渡为规整柱状晶组织。

  • 标签: 铌合金 硅化物涂层 界面结构 等轴晶 柱状晶
  • 简介:采用Ag-Cu-Ti钎料连接C/C复合材料,用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)等分析连接层微观结构与相组成,并测试连接层剪切强度。结果表明:C/C复合材料连接层剪切强度跟连接温度与保温时间有关;在850℃、保温30min条件下获得连接层剪切强度最高,达到26.7MPa;同时连接层与基体材料形成机械嵌合,界面发生元素扩散和冶金反应。钎焊连接层形成固溶体和化合物,包括Ag(s.s)、Cu(s.s)、Cu4Ti3和TiC。剪切断口形貌表明钎焊层与C/C坯体之间结合较好,具有一定连接强度。

  • 标签: 炭/炭复合材料 AgCuTi 钎焊连接 组织结构
  • 简介:由中南大学刘咏教授、西北有色金属研究院汤慧萍教授著成《粉末冶金钛基结构材料》一书已由中南大学出版社出版。该书为国家出版基金项目“有色金属理论与技术前沿丛书”之一,主要针对粉末冶金方法制备钛合金和钛铝金属问化合物,

  • 标签: 粉末冶金 结构材料 钛合金 西北有色金属研究院 中南大学 出版社
  • 简介:对新型热电池阳极材料Li-B合金中耐热骨架LiB化合物进行了晶体结构测定和形貌观察,获得了该化合物完整X射线衍射谱线,经过XRD谱衍射强度计算和电子密度函数分析,确定该化合物化学组成为LiB,属于六方晶系,空间群为No.194,晶格常数α=0.4022nm,c=0.2796nm;单中原子坐标B1(0,0,0),B2(0,0,1/2),Li1(2/3,1/3,0),Li2(1/3,2/3,1/2),理论密度d=1.50g/cm3,电子密度函数分析表明LiB化合物中Li原子电子向B原子迁移,B原子之间有高密度电子云区,呈共价键特征,SEM观察结果表明,LiB化合物呈纤维状,合金经轧制后纤维沿轧向排列,X射线平板照相实验结果表明它具有丝织构特征,其衍射花样也与本结构模型计算结果一致。

  • 标签: LiB化合物 LI-B合金 晶体结构
  • 简介:在元素粉末反应制备多孔材料中,原料粉末粒度是影响其多孔结构主要因素之一。本文通过元素粉末反应合成方法制备Cu-Al多孔材料,研究原料粉末粒径对Cu-Al多孔材料孔径、孔隙度、透气度和体积膨胀率等参数影响。结果表明:Al粉粒径是影响Cu-Al多孔材料最大孔径主要因素,材料最大孔径dm与Al粉粒径dp之间严格遵循dm=0.48dp线性变化规律;Cu粉粒径则对Cu-Al多孔材料最大孔径影响较小。当粉末粒径在48.5μm以上时,粉末粒径改变对Cu-Al多孔材料开孔隙度和总孔隙度影响不大。在实验研究范围内,Cu-Al多孔材料体积膨胀率随粉末粒径增大而增大;当粉末粒径很小时,Cu-Al多孔材料存在体积收缩趋势。

  • 标签: 粉末粒径 CU-AL合金 多孔材料 反应合成
  • 简介:概述了国内外梯度硬质合金进展,介绍了采用正碳烧结工艺来制备WC-Co梯度结构硬质合金工艺和基本原理,列举了合金实际应用领域,指出了该合金应用开发前景.

  • 标签: 硬质合金 梯度结构 正碳烧结
  • 简介:结合图、表和公式综述了材料设计从宏观到微观不同层次理论研究现状,包括连续介质力学、结构动力学、缺陷动力学、分子动力学和量子力学等,其中,量子力学属于微观层次,分子动力学主要属于介观层次,其余属于宏观层次;进而讨论了材料设计领域构建材料结构与性质关系、以及沟通与整合各层次理论跨尺度关联问题。最后,介绍了现阶段材料设计知识库和数据库技术、专家系统技术、计算机模拟技术和纯理论计算方法等4种途径。

  • 标签: 材料设计 跨尺度关联 数据库技术 计算机模拟 理论计算
  • 简介:紧耦合气雾化制粉过程中,当雾化气压超过某一临界值时,直管环缝型喷嘴气雾化流场结构存在"开涡—闭涡"突变现象,雾化效果随之发生显著改变。该文采用数值模拟方法研究紧耦合喷嘴气体流场中开涡和闭涡结构特征及其突变行为,以及雾化介质类型和喷嘴几何结构参数(喷射顶角、导液管伸出长度和末端直径、环缝宽度)对临界雾化压力Pc影响。结果表明:当雾化压力P略高于Pc时,马赫盘迅速截断回流区,流场结构由开涡向闭涡突变,并引起喷嘴熔体出口下方抽吸压力Pa骤降,突变前后抽吸压力差ΔPa约为30kPa;雾化介质类型和喷嘴主要几何结构参数对Pc有显著影响,但对ΔPa无明显影响。

  • 标签: 紧耦合气雾化 突变 流场结构 数值模拟
  • 简介:以炭纤维针刺整体毡为增强体,采用化学气相渗透(CVI)工艺制备出不同密度炭/炭(C/C)多孔体,利用气压浸渍法将Cu合金渗入到C/C多孔体中制备C/C-Cu复合材料。在简支梁摆锤式冲击试验机上测试C/C-Cu复合材料冲击性能,采用金相显微镜和扫描电镜观察材料微观结构和断口形貌。结果表明:铜合金在C/C多孔体中分布均匀;C/C-Cu复合材料垂直方向冲击韧性优于平行方向冲击韧性;随C/C多孔体密度增加,材料冲击韧性先增加后降低。C/C多孔体密度适中(1.44g/cm3)时,C/C-Cu复合材料内炭纤维、热解炭、铜合金等组分协同作用,在平行和垂直2个方向冲击韧性都达到最大值,分别为2.68J/cm2和4.45J/cm2,具有假塑性断裂行为特征。

  • 标签: C C-Cu复合材料 C C多孔体 微观结构 冲击性能
  • 简介:采用反应磁控溅射法分别在单晶硅(100)和不锈钢基底上沉积不同W含量Zr1-xWxN(x=0.17,0.28,0.36,0.44,0.49)复合膜,利用扫描电镜、能谱仪、X射线衍射仪、纳米压痕仪和摩擦磨损试验机研究该复合薄膜结构、力学性能及摩擦性能,并探讨ZrWN复合膜摩擦机理。结果表明:当x≤0.28时,复合膜呈fcc(Zr,W)N结构;当x为0.36~0.44时,复合膜呈fcc(Zr,W)N和fccW2N结构;当x=0.49时复合膜为fcc(Zr,W)N、fccW2N结构和β-W单质。Zr1-xWxN复合膜硬度随x增加先增大后减小,当x=0.44时达到最大值,为36.0GPa。随x增加,Zr1-xWxN复合膜室温摩擦因数先减小后增大,摩擦表面生成氧化物WO3对于降低摩擦因数起重要作用。

  • 标签: ZrWN复合膜 微结构 力学性能 摩擦性能
  • 简介:以铝热反应法制备无昂贵合金元素添加纳米结构白口铸铁,采用XRD、OM、SEM和拉伸及压缩等分析、测试手段研究碳含量对纳米结构白口铸铁组织和力学性能影响。结果表明:随碳含量增加,白口铸铁由不同形态珠光体和渗碳体组成,其中层片状珠光体含量减少,粒状珠光体含量增加;层片状珠光体片间距分别为165、231和250nm。碳含量为3.5%,3.7%和4.3%纳米结构白口铸铁维氏硬度分别为552、577和575HV,抗压强度为2224、2460和2220MPa,抗拉强度为383、416和245MP,均呈现先增大后减小趋势;伸长率为3%、2.5%和1%,呈现逐渐下降趋势。无昂贵合金元素添加纳米结构白口铸铁力学性能与Ni-Hard2铸铁相当。

  • 标签: 纳米结构白口铸铁 碳含量 组织 力学性能
  • 简介:热等静压(HotIsostaticPress,HIP)技术是在惰性气氛中,在各向均衡气体高压力及高温共同作用下,去除材料内部孔洞及缺陷,以改善机械性质、使粉末材料及表面蒸镀物具一致性、通过扩散键结(diffusionbonding)改善焊接完整性等。热等静压适用于多种材料及器件,特别是铝合金、工具钢、钛、超合金以及蒸汽涡轮零件、医学植入件、自动化铸件、靶材与粉末冶金制品等。考虑到近年来随着高密度、高传输速率光储存媒体及平面显示器发展,靶材研究与开发,巳成为光学薄膜制造关键技术,该文作者以热等静压方法改善金属靶材,比较热等静压前后靶材性质差异和论证批量生产可行性;并探讨热等静压处理对靶材性质影响、比较其显微结构变化,以评估热等静压改善金属靶材材之可行性。研究结果显示,利用l100℃,175MPa,4h热等静压制备流程条件,对3种不同成分配比之Cr-Si热压靶材进行热等静压处理,均可有效改善孔隙率,其中以50Cr-50Si热等静压效果最为显著,孔隙率可有效降低60%。此外,靶材在经过热等静压后,由于炉内气体纯化效应而使得靶材氮、氧浓度皆有所上升,尤其是Si以单独元素形态存在时更甚,从而造成靶材纯度受到影响。

  • 标签: 热等静压 扩散键结 靶材 孔隙率
  • 简介:以ZnO粉末为原料,用N2作为载气,采用无催化辅助热蒸发法沉积制备ZnO纳米结构,分别用X线衍射仪、扫描电镜和透射电镜对ZnO物相、形貌和结构进行表征,并结合晶体生长理论和实验条件,对ZnO产物形貌变化和纳米带生长方向进行研究。结果表明:离气源较近位置到离出口较近位置,ZnO纳米结构形貌由连续颗粒膜逐渐向纳米带、直径大于100nm和直径小于100nm纳米线变化。特别是发现ZnO纳米带除了常见[001]生长方向外,还有[101]和[203]两种极为罕见生长方向,这些纳米带都具有上下表面均由(±010)晶面组成特点。ZnO产物形貌变化是其生长过程由动力学控制为主转向热力学控制为主结果,纳米带生长方向不同,可能与其晶核形成过程中竞争生长有关。

  • 标签: ZNO 纳米结构 热蒸发沉积 纳米带 纳米线 生长方向
  • 简介:采用水热法制备铈稳定钪掺杂氧化锆超细纳米晶。利用X射线衍射仪、傅里叶红外光谱仪分别研究水热产物物相和结构,结合热重-差热分析仪分析水热反应过程物相与能量变化,通过透射电子显微镜研究pH值对水热产物颗粒大小与聚集状态影响。结果表明,在200℃、pH=8、反应时间为3h时,得到水热产物为立方单相,粒径约为4nm。当pH值升高到10时,立方相颗粒出现长大和团聚现象,平均粒径约为6nm。

  • 标签: 水热法 铈稳定钪掺杂氧化锆 纳米晶
  • 简介:以Fe、Al元素混合粉末为原料,采用粉末冶金法,通过偏扩散/反应合成—烧结,制备Fe-Al金属间化合物多孔材料。根据烧结前后多孔试样质量变化,并结合XRD、SEM、EDS等测试手段,对烧结过程中多孔试样基础元素挥发行为及孔结构变化进行研究。结果表明,真空烧结元素粉末制备Fe-Al多孔材料过程中,最终烧结温度为1000℃、保温4h时,Fe-Al多孔试样质量损失率为0.05%,而最终烧结温度为1300℃时质量损失率达到10.53%;随着最终烧结温度升高,合金元素沿孔壁表面挥发程度增大,导致Fe-Al多孔试样孔径、开孔隙率和透气度变大。采用MIEDEMA模型和LANGMUIR方程,对真空烧结过程中质量损失原因进行理论分析,表明Al挥发是导致多孔试样质量和孔结构变化主要原因。

  • 标签: 真空烧结 金属间化合物 FE-AL 多孔材料 挥发
  • 简介:以硝酸铟为原料,用氨水做沉淀剂,采用水解沉淀-水热法制备In2O3前驱体In(OH)3,用扫描电镜、X射线衍射仪及激光粒度分析仪对产物结构、形貌和粒度进行表征。结果表明,水解沉淀产物为立方相In(OH)3,呈短棒状团聚体。水热处理过程中,产物晶型、形貌和粒度受Ostwald熟化机制和相转化机制影响。当水热温度低于280℃时,首先发生Ostwald熟化机制,In(OH)3颗粒形貌由短棒状转变为长方体,而物相不发生变化。当水热温度高于280℃时,除发生Ostwald熟化机制外,还存在相转化机制,产物形貌先由棒状转变为长方体,接着转变为多面体,且物相由立方相In(OH),转变为斜方相InOOH。

  • 标签: 氢氧化铟 水热法 物相转化 熟化
  • 简介:分别采用超音速火焰喷涂工艺和爆炸喷涂工艺,在Q235不锈钢基体上制备Fe基非晶合金涂层,对比研究这2种非晶合金涂层在室温下干摩擦磨损特性,并探讨摩擦磨损机理。结果表明,与超音速火焰喷涂工艺制备Fe基非晶合金涂层相比,采用爆炸喷涂工艺制备涂层更致密,孔隙率为2.1%,显微硬度更高,平均硬度高达1095.6HV,且耐磨性更好;并且涂层摩擦因数增至稳定值时间较短,具有更稳定摩擦磨损行为。超音速火焰喷涂涂层磨损形式主要以疲劳磨损为主,而爆炸喷涂涂层磨损形式为粘着磨损和磨粒磨损综合作用,并以粘着磨损为主。

  • 标签: 超音速火焰喷涂 爆炸喷涂 非晶合金涂层 摩擦磨损
  • 简介:以Cu-Zr混合粉末为熔渗剂,密度为1.4g/cm3多孔C/C复合材料为坯体,采用反应熔渗法制备C/C-ZrC-Cu复合材料,研究了复合材料组织结构及物相组成,并对复合材料组织结构形成机理进行了分析。结果表明:熔渗剂中Zr含量不同时,制备复合材料均主要由C,ZrC和Cu相组成。随熔渗剂中Zr含量由50%增加到70%(质量分数),制备复合材料中Cu含量逐渐降低,熔渗剂中Zr含量为60%时复合材料中ZrC含量最高(43.2%)。C/C复合坯体内孔隙被反应生成ZrC相及残余Cu相充分填充,炭纤维周围存在一层较致密ZrC层,在远离炭纤维处,ZrC颗粒与Cu相呈混合分布状态。ZrC与C和Cu均有良好界面结合状态,在ZrC颗粒长大和粗化过程中,形成了部分含内嵌Cu晶粒较大ZrC颗粒。

  • 标签: C/C-ZrC-Cu复合材料 反应熔渗 组织 Cu-Zn混合粉末
  • 简介:采用非水溶液溶胶-凝胶法,并结合高温碳热还原法制备锂离子电池用高可逆容量Sn-C复合负极材料,通过调节Sn源与炭源比例及碳热还原过程中升温制度来控制金属Sn粒度和Sn-C复合材料结构形态。借助XRD、EDS、SEM、循环伏安及恒流充放电测试对材料物化性能进行表征。结果表明,当Sn源与C源质量比为80:20、还原温度为800℃时,纳米级金属Sn均匀紧密地分布在无定形热解炭基体中,形成良好纳/微复合结构,此时复合材料性能相对最优;该复合材料在电流密度为100mA/g,首次可逆比容量为637.9mAh/g,循环30次后充电容量保持在372.5mAh/g以上,第二次循环库伦效率达到97%以上。

  • 标签: 锂离子电池 纳-微结构 溶胶-凝胶法 碳热还原法
  • 简介:利用分离式Hopkinson压杆(splithopkinsonpressurebar,简称SHPB)技术对T6时效态2195铝锂合金帽型试样进行动态加载获得绝热剪切带(adiabaticshearband,ASB),利用透射电镜(TEM)和光学显微镜(OM)观察动态加载前后剪切带微观结构特征,利用电子背散射衍射(EBSD)分析合金在100~400℃温度下退火后绝热剪切带微观结构变化,研究剪切带内纳米结构热稳定性。结果表明:在动态加载过程中,帽型试样剪切区域形成绝热剪切带,剪切带内晶粒为50~100nm左右纳米等轴晶,在绝热剪切形变过程中析出相已完全溶解于基体中,纳米晶内部和晶界不存在析出相。在不同温度下退火时,剪切带内晶粒随温度升高而长大,100~200℃温度下退火后晶粒未发生显著长大,在300℃退火后晶粒急剧长大到0.22μm,400℃退火后晶粒尺寸为1.77μm;在300℃左右温度下剪切带硬度显著下降,此温度正是剪切带内纳米晶粒急剧长大临界温度。

  • 标签: 2195铝锂合金 绝热剪切带 纳米结构 热稳定性