简介:温度是IMU及其他导航器件等精密仪器中需要监测的重要参数,传统的温度监测一般使用热电偶或者数字温度传感器(如DS18B20)等,监测程序复杂,功耗高,因此使用精密仪器中广泛采用的FPGA芯片独立完成高集成度、低功耗温度监测具有重要意义.在FPGA中通过搭建环形振荡器产生了自激振荡信号,该信号周期与FPGA芯片温度具有正相关性,通过对振荡信号周期的检测完成了对温度的监测,设计了一种以FPGA芯片同时作为敏感头和处理模块的温度传感器.通过对XilinxVirtex-2系列FPGA芯片进行实验,得到该传感器在-40℃~+60℃的范围内具有优于0.1℃的分辨率,优于0.5℃的检测精度,满足一般温度监测需要.实验表明该传感器具有功耗低、集成度高、可靠性好等优点.
简介:为了更加精确地模拟流动/运动耦合问题,建立了耦合动态混合网格生成、非定常流场计算和六自由度运动方程求解的一体化计算方法,并在统一框架内同时实现了松耦合与紧耦合方法.通过圆柱涡致自激振荡(vortexinducedvibration,VIV)的模拟,对不同时间精度的松耦合和紧耦合算法的优劣及适用范围进行了评估和分析;通过引入附加质量的概念,对耦合算法的稳定性进行了理论分析.研究表明:在流体的密度与物体的密度接近时,松耦合方法是不稳定的,必须采用紧耦合方法.最后利用耦合算法对二维鱼体的自主游动和钝锥三自由度自由飞过程进行了数值模拟,证实了理论分析的结论.
简介:对于目前的级联式SINS/GNSS组合导航系统来说,其卡尔曼滤波器的输出校正方式不能深入到捷联解算内部,无法抑制平台姿态误差的发散,也无法校正惯性器件误差,因而在该方式长时间运行不能控制滤波发散,导航精度随时间下降.为此设计了一种SINS/GNSS级联闭环反馈式组合导航系统,该系统能对SINS的位置、速度误差、平台误差及惯性器件误差作出最优估计并实施反馈.通过仿真证明:该系统不仅能提高导航解的精度,还在校准的同时具有动机座对准能力,满足了长时间导航定位的稳定性.
简介:讨论了以TMS320VC33为核心的数字控制系统硬件结构.针对磁悬浮控制力矩陀螺转子的大惯量、小跨距、扁平转子和高速旋转时的陀螺效应,采用积分分离和不完全微分PID加交叉反馈控制策略.实验证明,该系统能够有效地抑制高速转子的陀螺效应,达到控制力矩陀螺电磁轴承高速稳定运行的要求.
简介:冲击载荷强迫微加速度计的敏感质量大大偏离平衡位置,使差动静电力发生器的非线性效应体现出来,其结果是使正常工作时敏感质量仅在平衡位置附近有微小位移的状况下成立的负反馈闭环系统模型不再适用,敏感质量的受控特性可能变为正反馈,从而使微加速度计失效。为提高微加速度计受外界大载荷冲击后的可靠性,分析了加速度计的敏感质量在不同限制的静电反馈力下的受控特性及对应的闭环系统特性,推导了在已知止挡机械参数下确定微加速度计相应电气参数从而避免此类失效的防吸合准则。多次的验证实验表明,按防吸合准则设计了系统参数的静电力反馈加速度计,在受到远超过其本身量程的载荷冲击后,可以100%地防止吸合现象的出现。
简介:基于惯性系的双矢量定姿方法选择惯性系中的两个重力视运动向量作为不共线矢量,解决了传统双矢量定姿方法在晃动基座条件下易受载体角运动干扰而无法实现对准的问题,但该方法仍需要精确的地理纬度信息以参与对准计算。针对未知纬度条件下的SINS抗晃动自对准问题,提出了一种基于重力视运动的三矢量自对准方法。该方法将初始对准问题归结为求解当前时刻导航系相对于初始时刻载体系的姿态矩阵问题,并利用矢量运算进行求解,仿真结果表明:加速度计随机测量噪声会映射为重力视运动随机噪声,降低对准精度;当加速度计随机噪声量级较大时,会带来对准计算失败。针对噪声问题,引入Daubechies(db4)小波进行5层分解来实现对重力视运动的降噪,并选择去噪后的重力视运动向量参与三矢量定姿解算,仿真结果表明:db4小波具有良好的去噪效果,基于小波去噪的三矢量自对准方法可以有效完成未知纬度条件下的SINS初始对准。