简介:陀螺的噪声是影响组合导航系统精度的重要因素之一。以农机多传感器组合导航系统为研究背景,在分析经验模态分解去噪和小波去噪的基础上,提出了一种基于自相关特性的经验模态分解去噪方法。该方法根据本证模态函数分量的自相关函数特性,提出了一种含噪本证模态函数筛选策略。该方法能够自适应地确定主要含噪的本证模态函数分量,避免了需要人为确定的不足;同时,结合改进小波阈值去噪的优势,避免了将混叠在噪声中的有效信号完全消除,使其具有一定的自适应性。为了验证方法的有效性,利用农机组合导航系统中微机械陀螺的实际输出数据,分别采用改进阈值小波去噪方法、经验模态分解去噪和改进的经验模态分解去噪方法进行了对比试验。结果表明,改进经验模态分解去噪方法的效果要优于前者,在一定程度上能够改善农机多传感器组合导航系统的定位精度。
简介:为了提高标准Cubature卡尔曼滤波(CKF)的稳定性和鲁棒性,提出一种改进的多重渐消H∞滤波cubamre卡尔曼滤波算法。首先基于系统状态的可观测性给出多重渐消因子矩阵求解过程,提高滤波算法的稳定性,抑制滤波发散;其次,引入H∞鲁棒思想,构造多重渐消H∞滤波Cubature卡尔曼滤波器;最后,提出采用一种奇异值分解的矩阵分解策略代替标准Cubature卡尔曼滤波中的Cholesky分解,进一步提高算法的数值稳定性。实际GPS/INS组合导航实验表明,改进的多重渐消H∞滤波Cubature卡尔曼滤波算法不仅能有效抑制滤波发散提高算法的稳定性,而且对观测野值具有更高的鲁棒性;提出的新算法与标准CKF算法相比,XYZ三个方向的位置精度分别提高了55.8%,46.6%和39.7%。
简介:多路径误差是北斗导航定位系统高精度动态监测的主要误差源。针对北斗导航定位系统多路径误差的特性,结合广义特征值盲源分离方法的优势,提出一种基于参考信号的广义特征值盲源分离算法来削弱多路径效应的影响。首先将前一天的原始坐标残差序列通过奇异谱分析方法进行去噪,其结果作为初始参考信号;然后将当天的原始坐标残差序列进行经验模式分解方法分解,分解得到的IMF分量作为虚拟观测数据,利用广义特征值盲源分离算法获取当天多路径误差信号;最后,利用仿真数据和连续10天的实际观测数据进行试验分析,结果表明利用该方法建立的多路径误差改正模型能有效地了削弱多路径的影响,北、东、天三个方向精度分别提高了78.8%、35.3%、90.1%。提出的模型在一定程度上解决了固定多路径模型随着时间推移重复性减小且有效性降低的问题。