学科分类
/ 2
35 个结果
  • 简介:建立了一种电感耦合等离子体原子发射光谱法(ICP-AES)测定钴白合金中锗含量的分析方法,确定了溶样方法和分析谱线,进行了基体元素的干扰等实验,对方法精密度和准确度进行了考察,结果表明,方法的检出限为0.043μg/mL,对钴白合金中锗的测定结果与其它标准分析方法分析结果基本一致,方法的相对标准偏差RSD在1.1%~1.9%(n=7),样品的加标回收率在98.5%~102.1%。所建立的方法准确、快速,适用于钴白合金中锗的测定。

  • 标签: 电感耦合等离子体原子发射光谱法 钴白合金
  • 简介:通过硝酸、氢氟酸和盐酸分解试样,高氯酸冒烟驱走硅和氟,最后用盐酸溶解盐类,选择Al(396.152nm)、Ca(315.887nm)作为分析谱线,电感耦合等离子体原子发射光谱(ICP—AES)法测定硅锆合金中的铝和钙。研究了锆离子(0.3mg/mL)和铁离子(0.2mg/mL)共存体系中基体效应和光谱干扰对待测元素测定的影响。结果表明,该质量浓度的锆离子和铁离子对待测元素的测定结果不产生影响。铝和钙的质量浓度在10~50/ag/mL,其线性相关系数均不小于0.999,方法中铝和钙的检出限分别为0.009μg/mL和0.006μg/mL。按照实验方法测定硅锆合金中的铝和钙,结果的相对标准偏差(RSD,n=10)分别为0.85%和1.4%。方法适用,结果令人满意。

  • 标签: 硅锆合金 电感耦合等离子体原子发射光谱法 酸溶法
  • 简介:建立了沉淀分离银、铜,电感耦合等离子体原子发射光谱(ICP-AES)法测定银铜合金中微量磷的分析方法。重点研究了氯化银沉淀分离银和硫化铜沉淀分离铜的条件,以及ICP-AES法测定磷的工作条件和谱线选择。结果表明,沉淀分离后[Ag~+]〈0.1mg/L,[Cu~(2+)]〈1mg/L,Cu的干扰可以忽略;仪器功率1.3kW时,分析线P213.617nm时,方法的检出限0.076mg/L;测定银铜合金中0.00092%~0.0032%的磷含量,相对标准偏差5.3%~1.7%(n=7),样品加标回收率94.4%~103%,方法简便、快速,已应用于实际生产中。

  • 标签: 分析化学 ICP-AES AgCu合金
  • 简介:建立了氢化物发生-原子荧光光谱法(HG-AFS)测定特硬铅合金中硒和碲的分析方法。试样经硝酸和酒石酸溶解,硫酸沉淀分离基体铅元素。移取部分试液,在40%盐酸介质中直接用氢化物发生一原子荧光光谱法(HGAFs)测定样品中的硒;另移取部分试液,加入氢溴酸挥发除去砷、锑、锡、硒等元素,在40%盐酸介质中用氢化物发生-原子荧光光谱法(HG-AFS)测定样品中的碲。考察了测定的最佳条件、铅及共存元素对测定的影响。测定硒和碲的相对标准偏差分别为7.5%-9.3%和3.6%-13.0%,加标回收率分别为88%-92%和98%-102%。准确度和精密度均能满足分析需要,具有较强的实用性。

  • 标签: 氢化物发生-原子荧光光谱法 铅合金 测定 盐酸介质
  • 简介:采用硝酸溶样,电感耦合等离子体原子发射光谱法(ICP—AES)测定铸造锌合金中高含量的铝和铜。分别用基体匹配法和内标法分析铸造锌合金中铝和铜含量的准确度、精密度和加标回收率,结果表明基体匹配法在测定铸造锌合金中铝的含量时相对误差小于0.4%,好于内标法,回收率稳定在104%-108%;内标法在测定铸造锌合金中铝和铜时的相对标准偏差在0.2%~0.5%,明显好于基体匹配法,其中内标Sc测定铜时的准确度、精密度和回收率均较高,内标Y测定Al的含量时效果也较好。

  • 标签: ICP—AES 锌合金 基体匹配法 内标法
  • 简介:研究了电感耦合等离子体原子发射光谱法(ICP—AES)快速测定铁镍软磁合金中的镍含量,确定了最佳测定条件,以波长221.647nm作为镍的分析线,对溶解酸和酸浓度的影响进行探讨,选择钇作为内标元素。分析试样得到结果的相对标准偏差RSD小于0.91%(n=6),方法回收率为99.8%~100.1%(n=6),分析结果与丁二酮肟分光光度法相一致。电感耦合等离子体原子发射光谱法比传统的化学法准确、快速,已成功用于生产中。

  • 标签: 电感耦合等离子体原子发射光谱法 铁镍软磁合金
  • 简介:用盐酸、硝酸及氢氟酸溶解样品,采用基体匹配法配制标准溶液系列以消除基体效应的影响,选择Al394.401nm、Si251.611nm、Fe259.940nm、Co238.892nm、Ti337.280nm为分析线,使用电感耦合等离子体原子发射光谱(ICP-AES)法测定NiCrAlYSi合金中的铝、硅、铁、钴、钛。Al的质量分数在0.10%-15%、Si的质量分数在0.01%-6.0%、Fe、Co、Ti的质量分数在0.005%-0.50%时,各元素质量分数与对应的发射强度呈线性,线性相关系数不小于0.9995;方法中各元素检出限为0.0005%-0.0020%;结果的相对标准偏差为0.46%-3.7%;加标回收率为90.0%-104%。方法简单、快速,结果令人满意。

  • 标签: 电感耦合等离子体原子发射光谱法 NiCrAlYSi合金
  • 简介:建立了X射线荧光光谱法测定锌铝铜合金ZnAl6Cu1中铝、铜、铁、硅、镍、铅和镉的分析方法。探讨了各元素的分析条件,比较了不同制样方式及不同放置时间对铝强度的影响。在最佳的仪器分析条件下,测定了微量元素的检出限及主、次元素的精密度和准确度。检出限结果表明:各微量元素的检出限均满足标准要求,Cd和Pb元素的定量限稍高。精密度和准确度结果表明,铝、铜、铁元素的测量相对标准偏差在2.1%~5.9%,分析结果与国家标准方法一致。

  • 标签: X-射线荧光光谱 锌铝铜 元素 分析
  • 简介:采用电感耦合等离子体原子发射光谱法测定钛合金TC4中Fe、Al、V含量。使用硝酸与氢氟酸溶解试样,大幅缩短了溶样时间;确定了Fe、Al、V分析线分别为238.204、309.271、292.402nm。精密度实验表明,待测组分的相对标准偏差(RSD,n=10)均低于1.3%,能满足钛合金TC4中Fe、Al、V含量的检测要求。

  • 标签: 电感耦合等离子体原子发射光谱法 钛合金 硝酸 氢氟酸
  • 简介:提出了用电感耦合等离子体原子发射光谱法(ICP-AES)测定铋系超导材料合金元素含量的方法。通过实验确定试样溶样方法,最终采用硝酸+盐酸溶解样品;选择Bi223.061(151);Pb216.999(155);Sr346.446(97);Ca315.887(106);Cu224.700(149)作为元素分析谱线;确定最佳的仪器工作参数。方法回收率为99.0%-102.0%,RSD小于1.0%,具有良好的准确度和精密度,能满足日常超导材料中合金组分的分析。

  • 标签: 铋系超导材料
  • 简介:研究了电感耦合等离子体发射光谱(ICP-OES)法测定6系铝合金中微量的钆、镧、钕、镨、钐的方法,优化了ICP-OES工作条件,用标准加入法和标准曲线法做了比较,测定微量含量时,标准加入法比标准曲线法准确,在定量限和检出限之间约5倍空白标准偏差(5σ)含量时,标准加入法的加标回收率在80%~112%,检测结果具有参考价值。

  • 标签: ICP-OES 标准加入法 铝合金 微量 稀土元素
  • 简介:研究了ICP-AES测定Ti50Si合金中钛含量的方法。采用氢氟酸、硝酸溶解试样,优化了射频发生器(RF)功率、雾化压力、辅助气流量以及泵速等仪器参数,通过实验分析了溶液酸度、分析谱线的影响,确定了最佳实验条件。测定了2份Ti50Si样品,相对标准偏差小于0.64%(n-11),与硫酸高铁铵滴定法测定结果一致,证明了方法有较高的准确度和实用性。

  • 标签: 电感耦合等离子体原子发射光谱法 钛硅
  • 简介:研究了快速测定高温合金中5种非金属元素(As,B,P,Se,Si)的分析方法,以满足高温合金行业对非金属元素检测的需求。利用王水、氢氟酸和酒石酸对高温合金进行酸溶解,系统研究了基体元素和共存元素对分析元素谱线的光谱干扰情况,同时进行了分析谱线的选择。5种非金属元素的检出限在5.0~12.0μg/mL,5次数据的相对标准偏差(RSD,n=5)为1.1%~4.0%,各元素的加标回收率在96%~102%,方法适用于高温合金中非金属元素的测定。

  • 标签: 高温合金 电感耦合等离子体原子发射光谱法 非金属元素
  • 简介:建立了电感耦合等离子体原子发射光谱(ICP-AES)法快速测定TB6钛合金中Al、V的方法。对试样溶解酸浓度、元素分析谱线的选择、样品基体与待测元素间的干扰等因素进行了研究。结果表明,Al、V元素的加标回收率分别为97.5%-100%、98.4%-102%,相对标准偏差(RSD)分别为1.2%、0.45%,可用于TB6钛合金中Al、V含量的实际测定。

  • 标签: ICP-AES TB6合金 AL V
  • 简介:研究了电感耦合等离子体原子发射光谱(ICP-AES)法测定Al-Cu-Li系合金中Cu、Li、Ag、Mg和Zr的方法。对样品溶解、共存元素干扰、基体效应进行了研究。采用硝酸和过量盐酸溶解试样,选择Cu324.752nm、Li670.784nm、Ag328.068nm、Mg285.213nm和Zr343.823nm作为分析线。配制标准工作曲线溶液时用纯铝打底消除基体效应。Cu、Li、Ag、Mg和Zr的分析范围分别为0.10%-4.00%、0.10%-2.00%、0.10%-1.00%、0.10%-1.00%和0.01%-0.50%,各元素的检出限均小于0.01μg/mL,加标回收率在94%-106%,相对标准偏差均小于2%,用于标准物质的测定,结果与认定值一致。

  • 标签: 电感耦合等离子体原子发射光谱法 AL-CU-LI合金 CU LI 微合金元素