浅析智能电网发展关键技术

(整期优先)网络出版时间:2015-10-20
/ 2

浅析智能电网发展关键技术

王三桃石帅

(国网浙江省电力公司温州供电公司浙江温州325000)

摘要:本文针对我国电网智能化发展过程中面临的技术性问题和挑战,从特高压交、直流输电技术,智能输变电装备技术,新型电力电子器件及应用技术等五个方面,介绍了我国智能电网发展的关键技术。

关键字:智能电网;关键技术

一、引言

电力系统是一个技术密集型的行业,新技术的应用与电力系统发展是密切相关的,也是推动电网发展的强大动力。我们国家现在的电网发展已经进入了一个新的发展阶段,建成了一个特高压的骨干网架,根据电网电压协调发展的坚强智能电网正在稳步推进。要实行电网智能话发展,存在很多技术性问题和挑战。

要解决风电场大规模并网,给电力系统安全稳定性评估分析及对策等问题。解决变电站自动化调度中心自愈能力。分布式发电并网、需求式管理。攻克新型直流输电、大规模储能,超导电力等技术问题。在电力市场方面,要解决市场体系设计、电价机制设计、电力发展机制等问题。

二、智能电网发展关键技术

目前我国智能电网研究主要关注以下五项关键技术上:

(一)特高压交、直流输电技术

(1)2011年12月份,特高压科技工程顺利投入运行,特高压交流输电技术顺利通过了500万千瓦的输电能力考验,具备了大电源在集体外送输电工程中往外运送的条件,我们一期工程最大只能输送240万千瓦左右的能力,经过扩建以后,增加了变压器,输送能力超过了500万千瓦12月8日12时--15时,工程在电网全接线运行方式下,稳定运行在500万千瓦水平,平均功率518.7万千瓦。其中14时12分--48分,进行了超500万千瓦功率运行实验,平均功率533.8万千瓦。

(2)大容量特高压开关

我国在国际上率先建立了63千安特高压开关的试验能力,并首次研制成功电力等级最高、电流开断能力最强的特高压开关,实现了世界高压开关试验和制造技术的重大突破。

(3)特高压升压变压器

能源基地大型发电机组通过特高压升压变压器直接接入电网,有利于提高电源送出通道输送能力,发挥特高压大容量书店的优势。特高压升压变压器属世界首次研制,国网公司组织三大变压器厂联合攻关,在世界上首次研制成功额定容量100万千伏安的双柱特高压变压器,代表了国际同类设备制造的最高水平。

(4)特高压同塔双回输电技术

特高压同塔双回路的走廊宽度与两个单回路相比,可以从140米下降至80米,结合后续特高压工程,对特高压同塔双回输电的关键技术进行了深入研究,功课了过电压绝缘配合、导线排列、雷电防护、潜供电流、杆塔设计等关键技术。目前,已在安徽淮南—上海特高压输电工程中得到应用。

(5)特高压可控高抗技术

采用可控高抗技术,能够动态补偿输电系统的柔性输电功率,调节系统电压,可以限制系统的高电压,提高系统的安全性。特高压可控高抗技术在世界上属于首次研制。目前已经全面突破系统集成等关键技术。

(6)±1100kV特高压直流输电技术

±1100kV特高压直流输电关键技术研究已经取得重大进展,技术规范已正式发布,为全面开展设备研制和成套设计和试验打下了坚实的基础。

(二)智能输变电装备技术

装备技术是实现智能电网的基础,通过将智能技术整合到输变电装备中,使其向大容量、低损耗、环境友好、智能化方向发展,是提高供电可靠性的重要保障。

1.变压器

朝着高可靠性、安全(难燃、低噪声)、低损耗、智能化及紧凑化方向发展,其技术经济指标将会进一步提高,随着未来新材料和新技术的发展,变压器也将随之出现变革。

2.断路器

SF6断路器继续在高电压、大电流、高可靠性和选相控制的方向发展。真空断路器会继续向高电压发展,固态断路器将主要应用在一些需要高性能开断和投入的场合。在直流输电领域,高压直流断路器的研制和应用,将推动多段直流输电的发展,推进电网形态发生变革。

3.电子式互感器

电子式互感器将得到广泛应用,研究的重点包括:技术规范化和智能化;外国相关技术;功能拓展等等。

(三)新型电力电子器件及应用技术

电力电子技术和装备应用于交、直流输电系统,可以显著提高电网发、输、配、用各个环节的可控性,推动风能、太阳能等可再生能源的开发和利用,是实现坚强智能电网的重要保障。随着材料技术的发展,电力电子器件级的技术会响应取得突破,对输电技术体系产生巨大影响,将促进电力系统实现整体技术提升。

1.柔性交流输电技术

国家电网公司编制了“电力系统电力电子关键技术研究框架”,加紧开展柔性交流输电技术的研发。目前基于晶闸管半控器件的FACTS装置已推广应用;基于全控器件的静止同步补偿器(STATCOM)也取得了重大技术突破,逐步得到应用。

2.柔性直流输电技术

国家电网公司于2006年5月制订了《电压源换相高压直流输电系统关键技术研究框架》,全面启动了该技术的系统研究。目前,上海南汇风电场VSC-HVDC示范工程已投入运行;大连1000MW级VSC-HVDC工程进入建设阶段;舟山VSC-HVDC工程也开始前期工作。

(1)电压源换相高压直流输电技术(VSC—HVDC)

采用新型全控型电力电子器件IGBT构成换流器,其主要特点如下:可以对有功和无功功率进行精确控制。无需外部交流网提供换相电压,不会发生换相失败。可以很好地解决换流器谐波问题。大大减少无功补偿容量和换流站占地位置。大大减少无功补偿容量和换流站占地面积。

(2)电压源换相高压直流(VSC-HVDC)配电网

采用VSC-HVDC技术,构成配电网,能够实现对电网参数,网络结构的灵活快速控制,输送功率的合理分配。这属于前瞻性配电网技术,目前处于基础理论研究阶段,尚无工程应用。

(四)大规模交、直流混合电网安全稳定控制技术

电力系统被誉为最复杂的人造系统,也是可靠性要求极高的庞大系统,必须应用现金的安全稳定控制技术,建立完善的大规模交直流混合电网电网协调控制体系。

大规模交直流混联电网安全稳定控制技术体现在以下几个方面:

1.建立在线安全分析、评估和决策理论,构建防范电网大面积停电的在线实时预警和防御体系。

2.智能PSS和TCSC、SVC等FACTS设备推广应用,达到对网络潮流和母线电压的快速、平滑调节与控制。

3.应用现金控制及信息技术,针对交直流混合、多滞留亏馈入和新能源发电并网等,构建具有高度适应性的电网安全控制系统。

(五)电网调度的全局优化与协调控制技术

电网智能化调度在智能电网体系中起到“神经中枢”的作用。借助先进的计算机、通信、电力系统分析和控制理论及技术,实现对电网调度的全局优化与协调控制,保证大电网的安全、经济运行。

1.构建智能调度中心

在信息支撑方面,建立分布式一体化数据和参数共享平台,实现基于三维可视化的智能互动式人机交互系统;在电网安全防御方面,建成在线安全评估和预警防控体系;实现基于PMU的高级应用和广域安全稳定监控;在电网运行优化方面,实现计划和调度的时空优化协调,实现基于全局信息优化的有功、无功闭环控制。

2.建立适应新能源发电的新型能量管理系统

随着风、光、储系统和电动汽车等大规模商业化运行,建立与之相适应的新型能量管理系统。对接入电网的发、用、储等设备进行统一调度管理,有效平衡间歇性发电功率和电网负荷状态之间的不同步性,提高接纳间歇性可再生能源发电的能力。

参考文献:

[1]周孝信.研究开发面向21世纪的电力系统技术[J].电网技术,1997,21(11):11-15

[2]赵畹君.智能电网发展技术[M].北京:中国电力出版社,2004

作者简介:

王三桃(1978.03.08)女学历:武汉水利电力大学工学学士研究方向:继电保护

石帅(1986.09.15)女学历:天津大学硕士学位研究方向:智能继电保护