电厂化学水处理设施防腐蚀方法探究

(整期优先)网络出版时间:2018-12-22
/ 2

电厂化学水处理设施防腐蚀方法探究

张梦雯张耀

(内蒙古国华呼伦贝尔发电有限公司内蒙古呼伦贝尔021025)

摘要:新的经济背景下,社会发展离不开电能的支撑,人们对于电力资源的使用需求不断提高,如何对电厂的化学水进行科学处理,成为从业人员的关注重点。文章对电厂化学水处理设施防腐蚀方法进行了研究分析,以供参考。

关键词:电厂;化学水处理;防腐蚀

1前言

化学水处理是电厂运行中的关键环节,能为热力设备提供驱动力。对于工作人员而言,只有合理设置处理工序,及时解决运行问题,才能提高电厂生产效率,减少设备损耗,实现经济效益和社会效益的最大化。以下结合实践,探讨了化学水处理运行中的问题和解决措施。

2电厂化学水处理技术的特点

在电厂内,化学水处理技术的特点如下:①集中化。水处理设备体积大、分布乱,出现故障难以及时排查。对此,采用集中化布置形式,能对分散的生产系统进行整合,实现自动化控制目标;不仅提高了空间利用率,而且能缩短隐患排查时间。②多元化。信息时代,电厂内化学水处理凸显出多元化特征,传统的酸碱中和技术、混凝过滤技术被摒弃,树脂技术、膜处理技术、微生物技术得以应用,提高了处理效率和质量。③环保性。为了响应国家可持续发展的号召,电厂化学水处理期间,应该遵循环保性原则,不能使用有毒有害药品,减少对周边环境的污染;水源的使用要提高利用效率,采取节水措施;废水经检测达到标准要求后才能排放。

3目前电厂化学运行中的问题

3.1除氧器超标运行

化学水处理过程中,热力设备是基础,考虑到水中存在溶解氧成分,必须使用除氧器将含量降低至标准范围,一般为7μg/L以内。但是,受到水质、运行环境、参数设置的影响,除氧器容易出现超标运行的问题,不仅难以保证7μg/L的处理要求,还会增加设备损耗,严重时引发运行故障。此外,经处理后的排污水中,含盐量比较低,可以进行回收利用。但是,循环利用的次数过少,会降低水资源利用效率;循环利用的次数过多,会导致有害物质富集,成为管道和设备腐蚀的重要原因。

3.2离子交换树脂受到污染

补给水是化学水处理的主要对象,对补给水的要求是无污染或微量污染。其中,江河湖泊中的水不能直接使用,虽然价格低廉,但存在较多的有害成分,如悬浮物、胶体、杂质阴阳离子等,会影响水处理系统及机组的可靠运行。举例来说,如果电厂用水预处理不合格,就会导致超滤系统、反渗透及除盐系统等设备膜元件损坏和离子树脂污染。除盐系统中的离子交换树脂一旦被污染,不仅会降低水处理系统的运行效率,增加再生剂的使用量,甚至使得树脂中毒或损坏缩短使用寿命,这会大大提高的处理成本。

3.3设备保养不当

电厂化学不仅有水处理工作,对热力设备的保养更是一个重点工作,因保养不当引起的故障和问题,会造成严重的经济损失。考虑到电厂热电系统规模大、结构复杂,因此设备维修保养工作繁重,不论是正常运行的设备,还是停用的设备,均要落实保养措施和检修计划。以防腐工作为例,能提高设备的抗腐蚀性能,避免设备、管道外表受到不良因素的侵蚀,推动处理工作顺利进行。

3.4仪表投用率较少

相关调查显示,电厂内化学水处理过程中,化学仪表的投运较少。这些仪表的使用,能对不同环节的水质参数进行监测,为系统运行提供数据支撑,也是保障安全生产的必要条件。其中,常用的化学仪表有流量计、液位计、压力计、温度计、PH值测定仪、电导表、氢导表、溶解氧表、闪光报警器等。实际生产中,在温度、环境的限制下,电厂为了降低成本,简化处理流程,就可能减少这些仪表的使用。

4电厂化学水处理设施防腐蚀方法

4.1反滤

通过充分的借助反滤自身所具备的选择透过特性,进而在滤过水分子的同时,有效的将其他分子拦截。在这一过程当中,膜层两侧就会形成一定的静压力差,然后将其作为推动力,有效的克服渗透压力,以此来更加有效的完成对电厂化学水的分离工作。在这里需要我们指出的是,最适宜的静压力差范围为1.5MPa―10.5MPa,在这一范围区间,能够更加有效的分离电厂化学水当中的不同例子,针对一些大分子和较大颗粒物,有着极为有效的清除效果。

4.2超滤

超滤是将压力作为推动力的。超滤的最佳操作范围为0.2MPa―0.3MPa。电厂化学水通过水泵,在进入到超滤装置之后,滤膜机会将水分离,在这一过程当中,较小的水分子、离子则能够透过滤膜,而较大的离子,则无法渗透到其中,这样一来,也就是我们所说的超滤,有着良好的纯化以及浓缩效果。

4.3电除盐

在应用电除盐工艺的过程当中,需要我们使用离子交换膜,主要包括阴、阳两膜。阴膜能够透过阴离子,进而将阳离子进行拦截,而阳膜则恰恰相反,能够透过阳离子,进而将阴离子拦截。我们充分的借助电除盐工艺,就能够更加有效的分离电厂化学水当中的杂质离子,确保电厂用水电导率能够符合电厂锅炉用水需求。不尽然如此,在深层脱盐方面,也有着良好的效果,有效的解决液体离子交换过程当中的树脂不连续应用的不足。

5实例分析

现阶段,随着时代的不断发展,各个领域对于工艺方面的要求也越来越高,在这种情况下,积极的应用全膜分离技术,能够有效的提升电厂水处理效果,进而确保电厂水处理工作的有序进行。现阶段,全膜分离技术在某厂得到了充分的应用。该电厂主要负责的焚烧一些生活垃圾,有两套垃圾焚烧装置,都是为往复炉排式焚烧锅炉。一台锅炉每小时能够焚烧近五百吨垃圾,其补水系统补水量为每小时二十四吨。所使用的水大多是自然水源,在对原水进行过滤的过程当中,应用的是全膜分离技术,控制系统是基于DOS设计的自动控制系统。该电厂在实际的工作过程当中,借助原水泵将水池当中的水运输到多介质过滤器当中,然后利用活性炭过滤器,过滤掉原水当中的颗粒物以及胶状物,进而达到净化的效果。紧接着,我们需要继续进行超滤工作,将净化的水倒入到反渗透装置当中,去除水中的二氧化碳,然后使其流入到淡水箱当中,然后经过二级反渗透装置进入到中间水箱,最终经过电除盐装置,实现对电厂锅炉的补水。在整个过程当中,都采用的是物理手段,并没有加入相应的化学试剂,这操作起来更加的方便快捷,降低了成本投入,而且还有效的确保了过滤水的质量。

6结语

综上所述,一直以来,电厂化学水处理工作都备受关注。以往传统的电厂化学水处理技术,已经无法满足当前电厂化学水处理需求。在这种情况下,我们积极的应用全膜分离技术,能够有效的弥补传统化学水处理技术的不足,进而促进电厂运行效率的提升。

参考文献;

[1]张婷,肖婷婷.电厂化学水处理运行中存在的难点分析[J].化工管理,2018,(2):142.

[2]董麒.电厂化学水处理运行中的问题及解决策略[J].商品与质量,2017,(22):184.